Experiment 29

Neutron Activation Analysis

Supervisor WS 2016-2017: Oleg Kalekin
Room: 314
Phone: 09131-85-27118
Email: Oleg.Kalekin@physik.uni-erlangen.de

Location of the experiment: Room 133 (Control Room of the Tandem Accelerator)

Literature:
• W. Bischof: Zulassungsarbeit, Erlangen 1982 (in German, available by supervisor)
• W. R. Leo: Techniques for Nuclear and Particle Physics Experiments 1.9-1.11, 2.6, 2.7, 4.1-4.4
• G. Musiol, R. Reif, D. Seeliger: Kern- und Elementarteilchenphysik, Kap. 4 und 5
Neutron Activation Analysis

Characteristics:
- A method for nondestructive testing of materials
- High-sensitivity, qualitative and quantitative determination of elements (here: Cu, V)
- Nuclear physics measurement method
 - Radioactivity
 - Radiation protection policy
 - Dosimeter, radiation protection prescriptions

Principle:
1. Activation of the sample → radionuclides
2. Measurement of γ-emission spectrum
3. Analysis
Radioactivity

Definition:
Spontaneous conversion of unstable isotopes of elements into other isotopes with emission of certain particles.
Reaction of the atomic nucleus!

Glossary: $^A_Z X_N$ Z: nuclear charge / number of protons
e.g. $^{65}_{29}\text{Cu}_{36}$ A: mass / nucleon number
N: number of neutrons

Basic types of radioactivity:
• α-decay (emission of a helium nucleus 4 He)
• β-decay (e^- or e^+ emission)
• spontaneous fission
...
• γ-decay
 ➢ Emission of a photon by an excited nucleus
 ➢ A result of a previous α- or β-decay, of a nuclear reaction, or of an inelastic collision with another nucleus or particle
 \rightarrow characteristic spectral lines

Keywords: Karlsruhe nuclide chart
Activation and Activity

- **Activation:**
 Operation of nuclear excitation of a particular isotope by multiple stimulation channels / processes

- **Activation rate (neutron activation):**
 Number C_∞ of activated atoms of a particular isotope for the constant neutron flux per sample and time

- **Activity:**
 Number $C(t)$ of decayed radionuclides per sample and time

- **Formulas:**
 \[C(t) = \lambda B(t), \quad B(t): \text{Number of existing radionuclides} \]
 \[\lambda: \text{decay constant} \]

 During activation, the following applies:
 \[\frac{dB(t)}{dt} = C_\infty - \lambda B(t) \]
 with Ansatz:
 \[B(t) = \frac{C_\infty}{\lambda} \times (1 - e^{-\lambda t}) \]
 it follows:
 \[C(t) = C_\infty \times (1 - e^{-\lambda t}) \]

 After the activation is stopped $t > t_B$: $C_\infty = 0$
 \[B(t) = B(t_B) \times e^{-\lambda(t-t_B)} \]
Step 1 – Activation: Technical Realization

Bombardment of the sample with
- γ – radiation
- e^- beam
- Charged particles (protons, deuterons)
- Neutrons

leads to the desired nuclear reactions

Preferably, thermal neutrons, $E_{\text{kin}} = (10-100)$ MeV
- Nuclear reaction of the same type: (n, γ)-compound
- Large cross section \rightarrow good sensitivity
- Deep penetration \rightarrow analysis of thick samples
- No Coulomb repulsion

Sources in the experiment:
252Cf and 247Am-9Be fission sources with moderator
Scheme of the \((n, \gamma)\)-reaction triggered by a thermal neutron with subsequent \(\beta^-\) decay of the resulting radionuclide.
Step 1 – Activation: Test Samples

<table>
<thead>
<tr>
<th>Element</th>
<th>Use</th>
<th>Isotope</th>
<th>σ_{act}/b</th>
<th>Radionuclide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A/%</td>
<td>T$_{1/2}$</td>
<td>E$_{\gamma}$/MeV</td>
</tr>
<tr>
<td>Vanadium</td>
<td>Tools</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>^{50}V</td>
<td>0.24</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>^{51}V</td>
<td>99.76</td>
<td>4.5</td>
</tr>
<tr>
<td>Copper</td>
<td>Coins</td>
<td>^{63}Cu</td>
<td>69.1</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>Brass</td>
<td>^{65}Cu</td>
<td>30.9</td>
<td>1.8</td>
</tr>
</tbody>
</table>

T$_{1/2}$ \leftrightarrow activation time (15 min), measurement time (10 min)

Higher detection sensitivity for Vanadium:

- Mass fractions A
- Activation cross-section σ_{act}
- Decay schemes
Step 1 – Activation: Vanadium V

\[
\begin{align*}
^{50}\text{V} + n & \rightarrow 11.052 \text{ MeV} \\
^{51}\text{V} + n & \rightarrow 11.290 \text{ MeV} \\
^{52}\text{V} & \rightarrow 3.979 \text{ MeV} \\
^{52}\text{Cr} & \rightarrow 0 \text{ MeV}
\end{align*}
\]
Step 1 – Activation: Copper Cu

$^{63}\text{Cu} \ + n \rightarrow 9.593 \text{ MeV}$

$^{64}\text{Ni} \rightarrow 0 \text{ MeV}$

$^{64}\text{Cu} \rightarrow 1.348 \text{ MeV}$

$^{64}\text{Cu} \rightarrow 1.677 \text{ MeV}$

$^{64}\text{Zn} \leftarrow \beta^+ \rightarrow 0.511 \text{ MeV}$

$^{64}\text{Zn} \leftarrow \beta^- \rightarrow 1.041 \text{ MeV}$

$^{65}\text{Cu} \ + n \rightarrow 9.698 \text{ MeV}$

$^{66}\text{Cu} \rightarrow 2.633 \text{ MeV}$

$^{66}\text{Zn} \rightarrow 1.039 \text{ MeV}$

$P = 9.25\%$
Step 2 – measurement of γ-spectrum: test setup

P: Probe
Ge(Li): Germanium (lithium doped) semiconductor detector cooled with liquid N_2
PA: preamplifier
MA: main amplifier
LGS: Linear gate stretcher
MCA: Multi-channel analyzer
⇒ Pulse height analysis: energy spectrum
⇒ multi-channel scanning: half-life
Step 2 – measurement of γ-spectrum: Interaction of γ-radiation with matter

3 processes:
- Photoeffect
- Compton effect
- Pair production

Process of electron-positron pair production as a result of the absorption of a γ-quantum in the Coulomb field of the nucleus (or an electron).

Requirement: $E \geq 2 \cdot m_e c^2 \geq 1022$ keV

\Rightarrow

1. Deep penetration of γ-rays in matter
2. Validity of the Beer-Lambert law

$$I(x) = I_0 e^{-\mu x}$$

with I: intensity
μ: linear absorption coefficient

Here: $\mu = n \sigma = n (\sigma_{\text{ph}} + \sigma_{C} + \sigma_{P})$

with σ: absorption cross section
n: atomic density
Step 2 – measurement of γ-spectrum: Interaction of γ-radiation with matter

- **Photoeffect**
- **Compton effect**
- **Pair production**
Step 2 – measurement of γ-spectrum: absorption cross section
Step 3 – Analysis

a) Calibration of the MCA (pulse height analysis mode) with a gamma calibration source (known emission lines)

b) Background investigations of Ge detector

c) Spectroscopy – following the scheme:
 – Activation (t_B)
 – Transportation to the test setup (t_T)
 – Measurement of the activity over the period t_M. The spectra are measured for:
 • A standard sample Cu/V (known mass)
 • Samples with unknown content of Cu/V, determination of the Cu/V content by comparing the heights of the characteristic spectral lines

d) Determine the half-life of ^{52}V:
 Activation and transport as above, but then data acquisition in multi-channel scanning mode (count rate as a function of time)